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CHAPTER 6

6. CLASSICAL MODELS FOR INTERMOLECULAR

INTERACTIONS

One of the important applications of MO calculations at the high level of

theory is to build simpler yet accurate models for intermolecular interactions. In this

chapter we will describe our efforts to construct classical models of intermolecular

interactions based on ab initio calculations. According to the Hellman-Feynman

theorem, forces on nuclei in the molecular system can be calculated classically from

the charge density of the molecule. Therefore, when building a classical model one has

to make sure that (a) wavefunction complies with the Hellman-Feynman theorem, and

(b) electron density is reproduced by classical charge distribution to a good

approximation. Classical charge distribution schemes in the form of different partial

atomic charge separation methods are considered in the first Section. We found that

the ab initio values on interaction energy in the urea chain dimer are best reproduced

by Mulliken charges. These values are used in Section 6.2 to describe polarization

effects in larger chain clusters. The modification of the wavefunction to satisfy the

Hellman-Feynman theorem by optimizing centroid positions of each basis function is

described in Section 6.3. The resulting charge distribution is significantly improved,

so that the residual electric field on the nuclei in the optimized molecule vanishes.

Since the existing codes are not well suited to handle floating basis sets, these

calculations present a computational challenge. Reducing the number of the basis

functions N to the minimum (N=Nc/2+N_, where Nc and N_ are the number of c- and

_-electrons, respectively) greatly reduces computational costs while maintaining built-
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in polarization flexibility of the basis set. This possibility is considered in Section

6.4. A semiempirical approach to optimizing parameters of this minimal floating basis

set is also suggested. The ability of the wavefunctions in the form of minimal floating

basis set to be exactly represented by N2 point charges opens the possibility of

building classical and combined models based on these wavefunctions.

Finally, alternatives to the electrostatic approach in description of the H-bonds

are considered in Section 6.5. Linear correlations between H-bonding energy and

monomer properties were found for the number of H-bonded systems. These are

interpreted in Section 6.5 in terms of the donor-acceptor nature of H-bonds.

6.1 Applicability of various definitions for atomic point charges

Atomic charge is not a quantum-mechanical observable and therefore does not

have a unique definition. Methods of defining atomic charge can be classified in four

groups: (I) empirical fit, including electronegativity schemes; (II) population analysis;

(III) fitting to electrostatic potential; (IV) systematic corrections of population atomic

charges to fit experimental dipole moments.1,2 Here we will consider only class II and

III definitions.

The first and most widely used definition of atomic charge, based on the wave

function, was suggested by Mulliken.3 The arbitrary aspect of this definition (equal

splitting of the overlap populations) was subject to criticism and gave rise to several

improved schemes, including that of Löwdin4 and natural population analysis (NPA)

by Weinhold,5 in which the basis set is orthogonalized and the overlap population

vanishes. Another approach is to divide charge density in real, rather then in Hilbert

space. Such schemes were suggested by Hiershfeld6 (based on electron density for
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spherical atoms), and Bader7 (based on topological analysis of the total electron

density). There are also charge partition schemes especially designed to reproduce

intermolecular interaction energies. This group is called potential derived charges,8

and they are optimized to give the best fit to the distribution of ab initio electrostatic

potential around the molecule. Another approach is to calculate the partial atomic

charge from ab initio force acting on the nucleus in the external electric field,

perpendicular to the molecular plane. These charges are called force derived charges

and were reported to accurately reproduce intermolecular interaction energy.9

Unfortunately, they are difficult to define for non-planar molecules. The projection of

all multipole momenta from all overlap densities on the nearest expansion point (an

atom, a bond centroid, etc.) defines distributed charges (and multipoles) as suggested

by Stone.10 Finally, the gradient of molecular dipole moment with respect to the

coordinates of a given atom is a definition of the charge according to Cioslovski11 (one

of the properties of this definition is that calculated IR intensities are equal to ab initio

predicted values).

We applied the charge definitions named above to describe a chain dimer of

urea. Lowdin and Stone charges were calculated using GAMESS-UK; the other

charges were obtained with GAUSSIAN 94 using options of the keyword Pop

(Regular for Mulliken, NPA for Weinhold, ChelpG and MK for potential-derived

charges). Force derived charges were calculated from forces exerted on nuclei in a

finite electric field, orthogonal to the molecular plane. The results are shown in Table

6.1. Presumably, if the charge scheme is correct, replacement of one molecule in the

cluster with a set of point charges does not change polarization of the other molecules.

Examination of the differences between the charges in the dimer and in the
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Table 6.1. Comparison between different atomic charge partition schemes for the
chain dimer of urea, all results are at HF/D95** level, charges are in a.u., interaction
energy is in kcal/mol.

Mulliken Lowdin NPA Stone ChelpG MK Force-
derived

Atomic PC in the monomer
O1 -0.50 -0.42 -0.82 -0.90 -0.78 -0.74 -0.54
C1 0.48 0.24 1.06 1.17 1.30 1.21 0.54
N1 -0.60 -0.32 -0.95 -0.57 -1.23 -1.19 -0.75
H1 0.31 0.20 0.42 0.23 0.54 0.51 0.35
H1' 0.29 0.20 0.41 0.21 0.45 0.45 0.36

difference between charges in dimer vs. monomer
O1 -0.018 -0.017 -0.019 -0.025 -0.039 -0.040 -0.008
C1 -0.020 -0.001 0.001 0.011 0.089 0.077 -0.026
N1 -0.012 -0.004 -0.007 -0.008 -0.089 -0.051 0.017
H1 0.038 0.007 0.024 0.038 0.081 0.054 -0.022
H1' -0.020 -0.010 -0.013 -0.016 -0.008 -0.010 -0.012
O2 -0.029 -0.019 -0.042 -0.045 -0.134 -0.091 0.031
C2 0.025 0.017 0.019 0.010 0.145 0.103 0.012
N2 0.003 0.010 0.008 -0.000 -0.055 -0.022 0.018
H2 0.010 0.005 0.007 0.009 0.019 0.014 -0.001
H2' 0.002 0.001 0.001 0.002 0.022 0.015 -0.005

% error of polarization by PC vs. polarization in dimer
O1 72 292 107 37 86
C1 34 604 110 48 47
N1 151 -17 133 70 42
H1 110 693 135 32 58
H1' 68 214 109 26 180
O2 139 111 20 462 61
C2 71 33 1096 1262 48
N2 121 46 -2730 -20426 29
H2 74 52 999 -1120 64
H2' 25 31 3912 3528 45

mean 88 192 403 -2123 67
Molecular HF stabilization in the presence of PC

∆E(12) -8.29 -31.57 -13.12 -14.25 -13.04 -7.88
∆E(21) -7.86 -5.55 -10.75 -8.72 -12.94 -7.15
∆E(av) -8.07 -18.56 -11.93 -11.48 -12.99 -7.51

monomers shows a very similar picture of molecular polarization. The only exception

is the decrease of the force related charge on an O2 atom accepting an H-bond. This is

counterintuitive and allows us to eliminate this charge scheme. The next block reports

error of the PC model in representing polarization in the dimer. Here we compare the
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deformation of the charges on one monomer exerted by a PC set representing

another monomer with deformation of ab initio charge in the dimer. We can see that

the Stone and NPA schemes overestimate the charge deformations on the second

monomer (H-bond acceptor) by an order of magnitude. By contrast, the Löwdin

scheme overestimates the charge changes on the first monomer. The Pop=MK option

is not available in GAUSSIAN in the presence of external point charges, but seems to

give the results similar to Pop=ChelpG option in the absence of point charges.

Thus, we are left with Mulliken and with potential derived charge ChelpG.

Both pass the last test, monomer stabilization energy in the presence of point charges

representing another monomer. Both are reasonably symmetrical and close to HF

interaction energy (slightly greater, probably due to sterical repulsion in the HF

dimer). In the following Section we will use Mulliken charges.

6.2 Variation of atomic point charges upon molecular polarization

simulates cooperative effects

As discussed in Chapter 2, polarizability can be introduced into the force field

by assigning an induced dipole to the molecular center or to each atom or bond. We

examined the possibility of obtaining the same result by a much simpler approach. In

this approach each atomic charge q in the molecule varies quadratically upon the

external electric field F at the position of this atom:

q(F) = q0 + a.F + b.F2

Parameters a and b are different for each of x, y, and z components of the field. The set

of parameters and the charge q0 in the absence of the external field are individual

characteristics of atoms in molecules. We fit these parameters to HF/D95** Mulliken
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charges in external dipolar field of ±0.01 au. We used quadratic rather then linear

dependence to describe symmetric molecules. For example, an external field

perpendicular to the planar molecule will induce the same atomic charges, as the field

in the opposite direction. Therefore, the linear component of the charge dependence a

is zero for this configuration, and the charge deformation is described by quadratic

component b.

We applied the model of variable atomic charges to the urea chain clusters

considered in Chapter 5. Intramolecular geometry was fixed to that of a monomer and

H-bonding distance to that of the dimer. Since the external field experienced by the

atom in a cluster is created by charges from the other monomers, it is no longer

uniform. As a result, the sum of modified atomic charges deviates from zero. In the

spirit of Mulliken analysis, we divided this deviation equally among all atoms so that

the molecules remain neutral.

The results are shown in Table 6.2. As one can see, FEn for the hexamer is

increased by 40%, compared to a 15% increase for the constant charge model and a

50% increase for the HF results. The dipole moments and total stabilization energies

are underestimated (up to 25% for higher clusters), as often happens when Mulliken

charges are used. We can conclude that polarization as described by this model

Table 6.2. Dipole moments µ (D), and interaction energies for chain clusters of urea
using HF/D95**, constant point charges (PC) and variable point charges (VPC)
methods.

N µ, HF µ, PC µ, VPC ∆En, HF ∆,=% ∆En-∆Edef ∆,=% ∆En,PC ∆,=% ∆En,VPC ∆,=%
1 4.8 4.0 4.0
2 10.9 7.9 9.0 -7.96 100 -8.19 100 -5.07 100 -6.84 100
3 17.5 11.9 14.0 -10.12 127 -10.67 130 -5.58 110 -8.71 127
4 24.2 15.8 19.1 -11.00 138 -11.73 143 -5.73 113 -9.22 135
5 31.1 19.8 24.2 -11.13 140 -11.96 146 -5.79 114 -9.42 138
6 38.0 23.8 29.4 -11.41 143 -12.29 150 -5.82 115 -9.51 139
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accounts for a large part of the cooperative effect in H-bonding. Further

improvements of the variable charges model may be necessary before it can be

incorporated in the empirical force fields.

6.3 Improving calculated molecular electric properties with floating

gaussian basis sets

There is a theoretical possibility of reducing intermolecular interactions to

Coulomb forces in accordance with the Hellman-Feynman theorem. However, this

requires high quality monomer wavefunction, properly deformed by intermolecular

interactions. The medium size atom centered basis sets widely used in MO

calculations produce wavefunctions that are not compliant with the Hellman-Feynman

theorem. To improve the wavefunction, a larger number of basis functions with high

angular momenta is necessary. The alternative is optimization of the center

coordinates for all basis functions rather than keeping them fixed to nuclear positions

(so-called floating gaussian basis set). It was shown that wavefunctions built with

floating gaussian (FG) basis sets satisfy the Hellman-Feynman theorem.12 For this

reason the Coulomb interaction energy of charges obtained in FG basis (even within

Mulliken approximations) is much close to the total HF interaction energy, as was

shown by Dannenberg, Simon and Duran.13

Any model that reduces continuous electron density distribution to point

charges, suffers a penetration problem. The interaction energy between a charged

particle and a charge distribution is determined by the charge in the inner area of this

distribution, as the outer area has no effect. So the interaction becomes weaker and

vanishes when the particle reaches the center of the charge distribution. This effect is
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neglected by the point charge model, unless explicit corrections are made (e.g., in

the form of damping factors). To reduce the error, Dannenberg, Simon and Duran used

point charges to represent one part of the system, and ab initio electron density to

represent another part.

As compared to conventional double-K basis sets, FGs do not significantly

improve the total energy. However, the bonds, angles, dipole moments and

polarizabilities of small molecules (2-4 atoms) are shown to be much closer to HF

limits in FG basis sets.14

When standard MO programs are used, the FG centroid positions are treated

together with atomic coordinates and determined according to the variational

principle. Unfortunately, the existing algorithms for molecular geometry optimization

are not well suited for FG specifics, such as large energy change at small coordinate

displacements. Optimization problems drastically increase with the size of the

molecule. Despite many insistent attempts, we were not able to obtain the

wavefunction for the urea ribbon dimer in floating D95** basis set. The results for the

urea chain dimer are presented in Table 6.4.

In calculations of the urea chain dimer in standard D95** basis set positions

for all atoms and basis functions were optimized separately (sets of 3 p-functions and

6 d-functions moved together respectively). One can see that optimization of the

positions for basis functions decreases the dipole moment for monomer and dimer

(bringing it closer to experimental value), as well as intermolecular interaction (by

about 1 kcal/mol).  To access the quality of the point-charge representation for FG

basis function, we performed calculations on 3 levels: PC-PC interaction, PC-electric

field created by charge density of the monomer, and PC-electric field created by the

charge density of the monomer polarized in a dimer. To measure the values of the
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latter, we performed the SCF procedure for the dimer, then modified the geometry

so that the second monomer was removed to infinity (actually, 900Å), and read in the

density matrix from the checkpoint file without repeating the SCF procedure

(keywords Density=Checkpoint, Guess=Only). Reading in the wavefunction instead of

the density matrix with modified geometry (keywords Guess=(Read,Only)) did not

give any meaningful results. The interaction energies in all the models are reported in

Table 6.3. Since molecules 1 and 2 in the dimer are represented differently, we report

the results in both ways, as well as the average values.

Comparing PC-PC interaction energy to the last column of Table 6.4

(dimerization energy of rigid monomers) we can conclude that conventional Mulliken

charges significantly underestimate the interaction energy, even if molecular

polarization is taken into consideration. FG-based monomer charges perform better,

but only (polarized) dimer charges give interaction energy obtained at HF level.

Surprisingly, the most accurate approximation (floating PCs for the dimer in the field

of the polarized monomer) significantly overestimates the interaction. This is probably

due to steric repulsions, which are not taken into account by the PC model. All the

other models give results reasonably consistent with ab initio interaction energy.

Table 6.3. Interaction energy for the chain dimer of urea calculated in Mulliken PC
model (conventional and fully floating D95** basis set parametrization).

conventional Floating
E(12) E(21) E(av) E(12) E(21) E(av)

 Monomer PC:
 PC-PC -5.13 -5.13 -5.13 -5.42 -5.42 -5.42
 PC-monomer field -6.45 -7.63 -7.04 -7.51 -7.39 -7.45
 PC-dimer field -6.39 -8.46 -7.42 -8.34 -9.35 -8.85
 dimer PC:
 PC-PC -6.20 -6.20 -6.20 -8.34 -8.34 -8.34
 PC-monomer field -7.60 -7.82 -7.71 -9.84 -8.68 -9.26
 PC-dimer field -7.55 -8.69 -8.12 -10.93 -11.00 -10.96
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The difference between 1-2 and 2-1 interactions can be considered a

measure of systematic error for the model. The lowest difference (except for the PC-

PC model, where it is 0 by design) is observed for our best approximation (FG-based

dimer PCs in the dimer field), as well as for FG-based monomer PCs in the monomer

field. This is a result of uniform representation for both parts of the dimer. The next

lowest difference is observed in the conventional dimer PC in the monomer field

model, and is most likely an interplay between underestimated polarizability and

overestimated polarity, typical for the conventional HF method.

We can conclude that the use of Mulliken point charges obtained in the FG

basis set for the dimer is advantageous compared to those of the conventional basis

set. It is also worth noting, that the polarization mechanism described by the FG basis

set is well suited for classical implementation. In fact describing polarizability using

the charges harmonically oscillating around the centers of heavy atoms had been

suggested.15 In this model the displacement of the charge from its equilibrium position

at the atomic center increases the total molecular energy but creates an atomic dipole,

stabilizing the molecule in the external field. The value of the charge and the force

constant describing its displacement are obtained by fitting to ab initio electrostatic

potential distribution in the presence of electric field. Results were found encouraging,

but needed adjustments in Van der Waals parameters. Also, the anisotropy of

polarizability was not accounted for in this model.

In our opinion, fitting the oscillator parameters to the experimentally obtained

partial atomic polarizabilities16 would yield a more transferable model. However,

using the positions and populations of FG functions directly to describe the oscillating

charge would eliminate the necessity of any fitting.



138

6.4 Construction of minimal floating spherical gaussian basis set

wavefunction, and its exact point charge model

A simplified version of the FG basis set, in which only s-functions are used

(floating spherical gaussian orbitals, FSGO) and both their positions and exponent

parameters are optimized, has been suggested16 and implemented.17 It was shown that

electric properties as well as energies are drastically improved in this approach for the

whole range of interatomic distances from equilibrium to the dissociation limit.18

More accurate multiconfigurational correlation treatment is also possible. As the

orbitals are explicitly localized in FSGO basis set, we should expect to enjoy all the

benefits reported for use of natural localized orbitals for this purpose.19

Spherical functions allow for analytical description of nonbonding

intermolecular interactions without resorting to empirical parameter fitting. It was

shown that orbital-orbital dispersion coefficients and three- and four-body non-

additive corrections to the dispersion interaction energy are easily obtainable for these

FSGO wavefunction using second and higher order perturbation energy.20 Damping

functions and exchange repulsion energy formulas were obtained using the surface

integral method.21

Since the product of two gaussian s-functions

mi(r) = (?i/_)3/2 exp(- ?i (r-ri)2);   mj(r) = (?j/_)3/2 exp(- ?j (r-rj)2)

is an s-function itself,

mij(r) = mi(r) mj(r) = (?ij/_)3/2exp(-?ij (r-rij)2);  ?ij = (?i+?j)/2;  rij = (?i ri+?j rj)/(?i+?j).

The electron density of the FSGO wavefunction is a sum of N spherical gaussians, and

can be exactly represented by the sum of (N2-N) point charges.22 To account for

penetration in close proximity to the molecule, dumping factors must be used. The
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FSGO model was modified to describe p-electrons using a tetrahedral arrangement

of FSGO around the core23 or lobe functions, i.e., pairs of s-orbitals at a fixed distance

to simulate p-orbital.24 The latter were found successful in reproducing geometries and

energies of hydrides HX and Van der Waals dimers, including Ar...HCl.25 The former

yielded fairly small errors in bond length (within 2%) and conformational barriers (but

not the total energies) for series of hydrocarbons, and allows one to establish trends in

positions and exponents of FSGO, depending on local environment.26 Simple

geometric rules were found to predict the size and approximate location of the FSGO

centers based on closest packing principle:27 each orbital is assigned a radius based on

its exponent factor, so that these spheres are touching each other in the molecule but

do not penetrate. Once the rules for the molecules of a certain class are established,

these parameters may be treated as constants to allow HF as well as post-HF

calculations on large molecules and clusters.28

As one can see, HF/FSGO is a powerful yet computationally light ab initio

method, capable of quantitative treatment of intermolecular interactions. The

numerical optimization of exponent parameters is clearly a disadvantage, and has

Table 6.4. Comparison between chain dimer of urea optimized with at HF level with
conventional and fully floating basis set: dipole moments µ (D), total energy E (a.u.),
interaction energy, CP correction, CP-corrected interaction energy, and CP-corrected
interaction energy less monomer relaxation (kcal/mol).

method monomer µ dimer µ E ∆E ∆Ecp ∆E’cp

HF/6-311+G(3df,2p) 4.59 10.61 -448.173633 -7.67 -7.50 -8.08
 conventional

HF/D95**
4.70 10.84 -448.106299 -8.78 -8.08 -8.44

floating
HF/D95**

4.61 10.70 -448.121097 -8.02 -7.01 -8.16

HF/FSGO, model 1 5.59 11.65 -381.296431 -9.62 -6.66 -7.89
HF/FSGO, model 2 6.05 13.06 -393.211024 -11.81 -9.45 -10.84
HF/FSGO, model 3 2.98   6.84 -385.459652 -4.62 -2.05
HF/FSGO, model 4 4.80 10.69 -381.776555 -8.98 -6.04
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prevented this method from being widely used.

We are mostly interested in the FSGO model as an inexpensive way to obtain a

wavefunction with accurate electric properties. Hence, it would be logical to select

exponent parameters of FSGO functions, which reproduce electrostatic potentials

obtained at HF or correlated limits, rather than from the variational principle. This

could be achieved by a semiempirical adjustment of the optimal exponent factors for

small molecules or functional groups. The values obtained could be then tabulated

similarly to conventional basis sets and used for complete HF/FSGO optimizations of

large clusters and macromolecules. Since FSGO wavefunctions can be exactly

represented by classical force fields (PC model with steric and dispersion terms), total

optimization can be carried out on a fragment-by-fragment basis, allowing a high

degree of parallelization. This has the advantage of a built-in mixed QM/MM

technique, where ab initio fragments can be as small as an isolated bond or a lone pair.

As a first step toward this goal, we carried out preliminary FSGO calculation

on the urea chain dimer. First, the parameters of the basis set were obtained in atomic

calculations on low-spin states of C and O atoms. In these calculations one atom-

centered spherical function described the core and the octahedron of six spherical

functions (three lobe functions) around it described the valence shell. The distance

from the lobe functions to the atomic center (separation distance) was varied to fit the

quadrupole moments, while all exponents were optimized using GAMESS-US. The

calculations yielded separation distances of 0.20 and 0.55Å, with exponent factors of

0.561 and 0.571 for O and C, respectively. Other atoms were nearly spherical and

gave a good fit at a large interval of the parameter. For F and N we chose separation

distances of 0.12 and 0.30Å, which corresponded to the optimal exponent factor of

0.56 (to keep basis set uniform). The exponent factors for the central core function
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were almost independent of separation distance and were found to be 10.58, 13.45,

and 18.23 for C, N, and O atoms.

In molecular and dimer calculations, core functions were placed on C, N, and

O atoms, one or two lobe functions were retained on atoms O or N respectively, and

single spherical functions were used to describe c-lone pair on O atom, NH, CN, and

CO bonds. The exponent values were fixed at value 0.56, obtained in atomic

calculations for all valent SGOs (model 1). All geometrical parameters (atomic and

electronic, except lobe separations) were optimized using GAUSSIAN 98.

Unfortunately, optimization with the exact Hessian does not work for floating basis

sets. That is why the options for the keyword OPT were set to Tight, Z-Matrix,

NRScale, EstmFC and Iop(3/15=0) for scaled gradient optimization using small steps.

The bond lengths and angles, listed on Table 6.5, were fairly close to conventional HF

results. Interaction energies and dipole moments for the dimers and monomers are

listed in Table 6.4. One can see that H-bond energy after CP correction closely

matches high-level HF results, even though the dipoles are clearly overestimated. 

BSSE in model 1 was found to be rather large (about 3 kcal/mol). In an attempt

to reduce this error, we used a more realistic description of the core orbitals in the

form of six contracted gaussians, taken from D95 basis set (model 2). This decreased

the total energy by 12 Hartree, but CP correction decreased only by 20%. Due to high

gradients, we were not able to optimize the positions of the core functions, and fixed

Table 6.5. Bond lengths and angles for urea monomer and H-bond in the chain dimer

C=O C-N N-Hs N-Ha OCN CNHs CNHa H...O
 HF/6-311+G(3df,2p) 1.196 1.358 0.988 0.989 122.3 117.4 123.4 2.26
 FSGO, model 1 1.292 1.396 1.001 1.001 126.8 120.4 123.2 1.98
 FSGO, model 2 1.238 1.456 1.050 1.045 128.2 119.1 121.9 2.19
 FSGO, model 3 1.331 1.375 1.001 1.001 126.8 120.4 123.2 2.01
 FSGO, model 4 1.218 1.354 0.957 0.956 127.3 121.1 121.6 1.92
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them on the nuclei. This further increased dipole moments and H-bonding

interaction, and did not improve molecular geometry.

Next, the exponent factors for all SGO in the monomer were individually

optimized using G98OPT utility. The resulting model (model 3) stabilizes the total

energy by 2 Hartree, but strongly underestimates dipole moments (Table 6.4) and, as a

result, intermolecular interaction. This supports our idea to choose exponents which

well reproduce electrostatic properties, rather than minimize the total energies. To

illustrate this, we fixed exponents of lobe functions at atomic values and varied

exponents of in-plane lone pairs on O atoms, as they were found to have the greatest

impact on the dipole moment. The dipole moment, which is reasonably close to the

high-level HF calculation, was obtained  with the exponent factor value of 0.60 (model

4). This significantly improved bond lengths (they are within 0.03Å of high-level HF

values). Uncorrected interaction energies decreased by 0.7 kcal, and CP correction did

not change.

We can conclude that the FSGO model is precise enough to describe

intermolecular interactions and, upon standardization of the technique and algorithm

improvements, may well compete in accuracy with conventional HF calculations. On

the other hand, low computational cost and the possibility of exact classical

representation of FSGO wave function argue for its use in the development of

presumably more precise hybrid quantum mechanics/molecular mechanics (QM/MM)

methods and “on the fly” molecular dynamics simulations.

6.5. Non-electrostatic models for intermolecular interactions

The earlier attempts to interpret mutual orientation of the molecules in crystals
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and gas phase dimers were based on the classical Lewis structure (formulated  by

Bent29 as the electron pair close packing principle) and were reasonably successful.

Later developments went in two directions: orbital models, based on localization

procedures of various flavors, and reducible down to maximum overlap

considerations;30 electrostatic approach,31 based on general domination of the

electrostatic term in the total interaction energy.32 As follows from the Hellman-

Feynman theorem, orbital and electrostatic approaches should be equivalent. In fact, a

model in which the point charges are placed at the centroids of localized orbitals was

suggested by Kollman33 to predict the geometry of molecular complexes.

Choosing the “best” approach should be a matter of convenience and

simplicity. One way is to choose the approach offering more predictability at lower

cost, rather than the one, which is better justified theoretically. In this respect the

FSGO model, localized by design, is intuitively clear, and yet can easily be quantified

from both the orbital and the electrostatic viewpoints.

There are a few examples in the literature of non-electrostatic qualitative

description of intermolecular interactions in the literature. One is a linear correlation

between the acidity/basicity of the hydrogen bond donor and acceptor.34 In the case of

small O-containing compounds, H-bonding with water varied despite the similarity of

the charge on the O atom, whereas for substituted amines the charge significantly

differred, and H-bonding strength remained almost the same.35  The authors noticed

that H-bonding energy correlates more strongly with the acidity or basicity of the

participating groups than with their partial charges. An opposite conclusion was made

in the case of H-bonded complexes between substituted acetylides and methanol, R-

CLC-...HOCH3 (R=H, tret-Bu, Ph, para-PhCH3), based on experiments in the gas

phase.36 These authors found the same H-bond strength (21.5 kcal/mol) for all four
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complexes, despite different basicity of acetylides (in 8 kcal/mol range). Based on

potential derived charges obtained at MP2/6-311++G** level, they argued that

electron distribution in CLC- fragment (as well as in CLC-H fragment37) is

independent on the substituent.

We looked at this relationship quantitatively on the example of para-

substituted phenylacetylenes (Table 6.6). Enthalpies of deprotonation (DPE) and H-

bond formation (HBE) were calculated with AM1 Hamiltonian. We found an excellent

correlation (R2=0.997) for the enthalpy (Figure 6.1):

HBE = -16.27(±0.05) kcal/mol + 0.0375(±0.0007) x DPE

and less pronounced correlation (R2=0.970) for the H-bonding distance:

r(H...O) = 1.865(±0.004) Å + 8.9(±0.5) Å mol/kcal  x 10-4 DPE

Table 6.6. AM1 results for para-substituted phenylacetylenes X-Ph-CLC-H (A):
enthalpy of formation FHf for the monomers, their anions, and complexes with water;
enthalpies of deprotonation and H-bonding (kcal/mol), bond lengths (Å), and H-
boning angles (o).

X= FHf(AH) FHf(A-) FHf(AH...OH2) FFH(deprot) FFH(H-bond) C-H H...O CH...O
NMe2 85.05 104.90 24.09 385.53 -1.72 1.065 2.2079 166.1
NH2 74.50 94.04 13.51 385.22 -1.75 1.065 2.2149 168.0

H 76.49 94.34 15.36 383.53 -1.89 1.065 2.2017 166.3
OH 32.07 49.50 -29.06 383.15 -1.88 1.065 2.2047 169.6
F 31.27 45.27 -30.01 379.68 -2.04 1.065 2.2082 180.
Cl 69.43 82.68 8.12 378.93 -2.07 1.065 2.2072 180.
CN 108.19 116.23 46.67 373.72 -2.28 1.065 2.2006 180.
NO2 80.35 81.24 18.53 366.57 -2.58 1.065 2.1894 180.
NH3

+ 231.22 173.59 167.30 308.05 -4.68 1.065 2.1407 180.
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Figure 6.1. Linear correlations for complexes of substituted para-phenylacetylenes
with water.

It is interesting to note that in the weakest complexes (X=NH2, OH, H) the

fragment H2O...H are not planar. This feature is not easy to rationalize based on the

electrostatic model. Here we suggest an explanation based on MO description of H-

bond. Let us consider the interaction between electron acceptor orbital a localized on

C-H fragment with electron donor orbitals nc, n_, representing lone pairs of an O

atom. According to second-order perturbation theory, the interaction between two

orbitals is inversely proportional to the difference in their energy levels I and

proportional to the square of the Hamiltonian integral. Habitual replacement of the

Hamiltonian with the overlap integral yields interaction energy

FE = - k <a|nc>2/(I(a)-I(nc)) - k <a|n_>2/(I(a)-I(n_))

where k is proportionality constant, the first and second terms represents a-nc, and

a-n_ interaction. Keeping the H...O distance constant, we will look at the dependence

of FE on the angle ? between the Z axis (C2 axis of water molecule) and H...O

direction. Assuming the lone pairs of the O atom to be spz
n  and px-AOs, we can

express the angular dependence of the overlap integral as:
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<a|nc> = 1/L(n+1)<a|s> + Ln/L(n+1)<a|pz>=

L(n+1)<a|s>+Ln/L(n+1)<a|p>cos ?

<a|n_> = <a|px> = <a|p> sin ?

In the case of pure s-character of the lone pair, n=0 and the angular dependence

becomes constant. For the angular dependence of interaction energy, we now have:

FE(?) = - k (1/(n+1) <a|s>2 + n/(n+1) <a|p>2cos2? +

 2Ln/(n+1) <a|p> <a|s> cos ?)/(I(a)-I(nc)) - k <a|p>2 (1- cos2?)/(I(a)-I(n_))

Taking the derivative of the interaction energy with respect to cos ? allows us to

search for extremum:

G FE/G(cos ?) = - k (2n/(n+1)<a|p>2cos ? + 2Ln/(n+1) <a|p> <a|s>)/(I(a)-I(nc)) +

2k <a|p>2 cos ?/(I(a)-I(n_)) = 0

which yields:

(n/(n+1) <a|p> cos ? +Ln/(n+1) <a|s>)/(I(a)-I(nc)) = <a|p> cos ?/(I(a)-I(n_))

or

cos ? = Ln/(n+1) <a|s> / <a|p> / ( (I(a)-I(nc))/(I(a)-I(n_)) - n/(n+1) )

We can substitute values obtained at HF/D95** level. The ratio of overlap

integrals is <1sH|2sO>/<1sH|2pO> = 0.08/0.15 = 0.56 at internuclear distance of 2Å,

and 0.011/0.027=0.40 at 3Å. Lone pair energies for H2O I(nc)=-0.57 au, I(n_)=-0.50

au, and antibonding energies for HF and HCN molecules are I(H-C)=0.41 and I(H-

F)=0.22 au. Assuming n=1, cos ? = ½ 0.40/ (1.08-1/2) =0.12 for HCN, and ½ 0.56/

(1.10-1/2) = 0.34 for HF. This yields ?=29o and 33o for HCN and HF respectively

(compare to HF/D95** optimized values of 0o and 50o). So the angular dependence on

overlap and energy is not very strong. The angle, however, strongly depends on the

change in the hybridization state of the lone pair. As hybridization of c-lone pair

changes from sp1 to sp1.41, the angle between the C2v axis of the H2O molecule and the
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direction of the O...H bond decreases from 29o to 1o. Upon a further increase in p-

character smooth minimum in the angular dependence becomes a singularity

extremum at 0o. The hybridization state of the lone pair can be estimated, for instance,

in NBO analysis. We found it to be 1.05 for weak H-bonded complexes and free water

molecules and 0.88 for the complex with HF. This brings the optimal angle values to

27o and 37o, accordingly. The hybridization state is, of course, model-dependent, but

the trends should be similar regardless of the model used.

Another correlation for H-bond energy was found in a recent HF/6-31+G**

study of XCHO...HF and XCN...HF complexes.38 A common linear relationship was

found between H-bonding energy and electrostatic potential at the position of H-

acceptor atom O or N in the isolated molecule (rather than in the region of the H-

bond). In the same study, no satisfactory correlation was found between H-bonding

energy and Mulliken or potential derived charges on an O atom.

Electrostatic potentials on nuclei are not often considered. Among the few

examples of their use, we could name the analysis of intramolecular interactions39 and

as a basis to derive a set of atomic charges.40 The experimental information about

electrostatic potential on the nuclei in principle can be extracted from X-Ray

photoelectron spectroscopy.41 Additional information on electric field gradient on the

nuclei is available using microwave spectra,42 NMR relaxation data,43 and nuclear

quadrupole resonance.44 Effects of H-bonding on quadrupole tensor were studied

recently on the examples of urea and HCN.45

We compared potential-HBE correlation with DPE-HBE correlation on the

example of X-CLC-H...NLC-Y complexes (Figure 6.2). Mulliken charge and potential

on atoms forming H-bonds, enthalpy of deprotonation, and H-bonding were again

calculated at AM1 level (Table 6.7). All geometric parameters were optimized for
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Figure 6.2. Linear correlations for complexes of substituted acetylenes with HCN.

-8 

-6 

-4 

-2 

0 

2 

4 

6 

En
th

al
py

 o
f H

-b
on

d,
 k

ca
l/m

ol

250 300 350 400 450 500 550 600 
Deprotonation enthalpy, kcal/mol

-8 

-6 

-4 

-2 

0 

2 

4 

6 

En
th

al
py

 o
f H

-b
on

d,
 k

ca
l/m

ol

-1.3 -1.2 -1.1 -1 -0.9 -0.8 -0.7 -0.6 
Electric potential on H atom, au

-8 

-6 

-4 

-2 

0 

2 

4 

6 

En
th

al
py

 o
f H

-b
on

d,
 k

ca
l/m

ol

0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 
Mulliken charge in H atom, au



149
Table 6.7. Complexes of substituted acetylene with substituted cyanide (AM1
results): H-bonding enthalpy HBE, protonation and deprotonation enthalpies PE, DPE,
kcal/mol, electrostatic potential at the nucleus position in the monomer, and Mulliken
charge on H-bonding atoms in the monomer.

R-CLN...H-CLC-NO2 H-CLN...H-CLC-R
R = HBE PE k(N) q(N) HBE DPE k(H) q(H)
O- -16.50 -336.51 -5.361 -0.534 4.59 551.04 -1.288 0.222
S- -12.86 -332.11 -5.233 -0.390 3.75 520.39 -1.219 0.222

NH2 -2.39 -189.80 -4.882 -0.100 -0.52 394.80 -0.966 0.297
CH3 -2.36 -189.07 -4.841 -0.095 -0.57 397.40 -0.943 0.286
H -2.12 -182.08 -4.832 -0.105 -0.66 400.20 -0.942 0.283

OH -1.97 -177.04 -4.837 -0.079 -0.72 390.93 -0.936 0.306
SH -1.86 -182.90 -4.798 -0.037 -0.92 386.05 -0.914 0.294
F -1.51 -165.78 -4.764 -0.047 -1.00 384.96 -0.892 0.316

CF3 -0.90 -165.17 -4.713 0.036 -1.68 367.54 -0.863 0.308
NO2 -0.44 -160.28 -4.705 0.068 -2.12 351.41 -0.852 0.324

C(NO2)3 -0.35 -159.26 -4.708 0.098 -2.24 339.60 -0.868 0.322
SO2F -0.04 -158.77 -4.660 0.137 -2.65 336.48 -0.819 0.322

CH2NH3
+ 2.97 -88.51 -4.594 0.111 -4.75 289.01 -0.756 0.340

NH3
+ 4.22 -54.47 -4.490 0.228 -6.09 263.62 -0.692 0.373

most dimers. However, anionic acetylenes (X=O-, S-) and cationic cyanides (Y=NH3
+,

CH2NH3
+) were found unbound, and the N...H distance in these cases was fixed at 2.8

Å, a value obtained for the weakest H-bonds.

For Y=H and different substituents X in the donor molecule (Figure 6.3), the

best correlation (R2=0.991) was again with the basicity:

HBE = -15.0(±0.3) kcal/mol + 0.036(±0.001) x DPE

Electric potential (ESPH) on an H atom is also correlated (R2=0.970) with H-bonding

enthalpy:

HBE = 17.0(±0.5) kcal/mol - 17.2(±0.9) kcal/mol/au x ESPH

and Mulliken charge (QH) on H atom is correlated poorly (R2=0.954):

HBE = 9.0(±0.6) kcal/mol - 67.(±4.) kcal/mol/au x QH

For X=NO2 and different substituents at H-bond acceptor we found rather poor

correlation (R2=0.953) with protonation energy PE of the cyanide:
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Figure 6.3. Linear correlations for complexes of substituted cyanides with
nitroacetylene.
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HBE = 10.(±1.) kcal/mol + 0.07(±0.005) x PE,

whereas the correlation with electric potential on N atom was the best (R2=0.974):

HBE = 111.(±1.) kcal/mol + 23.(±1.) Kcal/mol/au x ESPN

and the Mulliken charge on the N atom was poorly correlated again (R2=0.953):

HBE = -1.(±1.) kcal/mol + 26.(±2.) kcal/mol/au x QN

As ESP was the only quality to correlate with H-bonding strength for both

donor and acceptor atoms, we can combine this property of donor  and acceptor in a

double correlation:

HBE = 94.5 kcal/mol + 23. kcal/mol/au x ESPN - 17. kcal/mol/au x ESPH

The relationship can be used to predict H-bonding enthalpies for the complexes not

included in the training set. For example,  H-bond in H-CLC-H...NLC-H complex is

predicted to be -0.62 kcal/mol, while AM1 calculation gives -0.66 kcal/mol.

A possible explanation for the linear dependence between H-bonding energy

and electric potential on the nucleus could be found in a localized orbital picture of H-

bonding. The energy of the lone pair on the H-acceptor atom, as well as the energy of

the C-H antibonding orbital (which is mostly 1s orbital on H atom) are directly

proportional to the electric potential on these atomic centers. In second order

perturbation treatment the interaction energy between two orbitals is inversely

proportional to the difference in their energy (assuming orbital overlap does not

change). Fourier series expansion of the inverse proportionality gives the linear

dependence in the second term. It would be interesting to build a potential function of

the H-bond based on this relationship.

We can conclude that, at least for the complexes considered, electrostatic

potential on atomic position in an isolated molecule can be used to evaluate its ability

to serve as an H-bonding donor or acceptor.
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